Persuasive Technology in Mobile Applications Promoting Physical Activity: a Systematic Review

Persuasive technology in mobile applications can be used to influence the behaviour of users. A framework known as the Persuasive Systems Design model has been developed for designing and evaluating systems that influence the attitudes or behaviours of users. This paper reviews the current state of mobile applications for health behavioural change with an emphasis on applications that promote physical activity. The inbuilt persuasive features of mobile applications were evaluated using the Persuasive Systems Design model. A database search was conducted to identify relevant articles. Articles were then reviewed using the Persuasive Systems Design model as a framework for analysis. Primary task support, dialogue support, and social support were found to be moderately represented in the selected articles. However, system credibility support was found to have only low levels of representation as a persuasive systems design feature in mobile applications for supporting physical activity. To ensure that available mobile technology resources are best used to improve the wellbeing of people, it is important that the design principles that influence the effectiveness of persuasive technology be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

Persuasive Mobile Apps for Health and Wellness: A Comparative Systematic Review

Chapter © 2020

Persuasive Design in Mobile Applications for Mental Well-Being: Multidisciplinary Expert Review

Chapter © 2013

A Systematic Framework for Designing Persuasive Mobile Health Applications Using Behavior Change Wheel

Chapter © 2020

Explore related subjects

References

  1. Garcia-Aymerich, J., Lange, P., Benet, M., Schnohr, P., and Antó, J. M., Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: A population based cohort study. Thorax 61(9):772–778, 2006. doi:10.1136/thx.2006.060145. ArticlePubMed CentralCASPubMedGoogle Scholar
  2. Hallal, P. C., Andersen, L. B., Bull, F. C., Guthold, R., Haskell, W., and Ekelund, U., Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380(9838):247–257, 2012. doi:10.1016/S0140-6736(12)60646-1. ArticlePubMedGoogle Scholar
  3. Haskell, W. L., Lee, I.-M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C. A., Heath, G. W., Thompson, P. D., and Bauman, A., Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116(9):1081–1093, 2007. doi:10.1249/mss.0b013e3180616b27. ArticlePubMedGoogle Scholar
  4. Lee, I.-M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., and Katzmarzyk, P. T., Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 380(9838):219–229, 2012. doi:10.1016/S0140-6736(12)61031-9. ArticlePubMed CentralPubMedGoogle Scholar
  5. Fogg, B. J., Persuasive technology: using computers to change what we think and do. 2003. Morgan Kaufmann. 2003.
  6. Mitchell, B. L., Lewis, N. R., Smith, A. E., Rowlands, A. V., Parfitt, G., Dollman, J., Rural Environments and Community Health (REACH): a randomised controlled trial protocol for an online walking intervention in rural adults. Bmc. Public. Health. 14. doi:10.1186/1471-2458-14-969. 2014.
  7. Morgan, P. J., Callister, R., Collins, C. E., Plotnikoff, R. C., Young, M. D., Berry, N., McElduff, P., Burrows, T., Aguiar, E., and Saunders, K. L., The SHED-IT community trial: A randomized controlled trial of Internet- and paper-based weight loss programs tailored for overweight and obese men. Ann. Behav. Med. 45(2):139–152, 2013. ArticlePubMedGoogle Scholar
  8. Oinas-Kukkonen, H., Harjumaa, M., A systematic framework for designing and evaluating persuasive systems. In: Persuasive Technology, vol 5033. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp 164–176. doi:10.1007/978-3-540-68504-3_15, 2008.
  9. Win, K. T., Hassan, N. M., Bonney. A., Iverson, D., Benefits of online health education: Perception from consumers and health professionals. J. Med. Syst. 39 (3). doi:10.1007/s10916-015-0224-4, 2015.
  10. Oinas-Kukkonen, H., and Harjumaa, M., Persuasive systems design: Key issues, process model, and system features. Commun. Assoc. Inf. Syst. 24(1):28, 2009. Google Scholar
  11. Lehto, T., Oinas-Kukkonen, H., Persuasive features in web-based alcohol and smoking interventions: A systematic review of the literature. J. Med. Int. Res. 13 (3), 2011.
  12. Estrin, D., and Sim, I., Open mHealth architecture: An engine for health care innovation. Science 330(6005):759–760, 2010. doi:10.1126/science.1196187. ArticleCASPubMedGoogle Scholar
  13. Boulos, M. N., Wheeler, S., Tavares, C., Jones, R., How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. BioMed. Eng. OnLine 10 (24). doi:10.1186/1475-925X-10-24, 2011.
  14. Kaptein, M., Markopoulos, P., de Ruyter, B., and Aarts, E., Personalizing persuasive technologies: Explicit and implicit personalization using persuasion profiles. Int. J. Human-Comput. Stud. 77:38–51, 2015. doi:10.1016/j.ijhcs.2015.01.004. ArticleGoogle Scholar
  15. Win KT Implementing patient accessible health information site for diabetes management. In: Pacific Asia Conference on Information Systems, 2010. pp 1790–1797.
  16. Hassan, N. M., Win, K. T., Exploring Design Features and Benefits of Online Patient Education (OPE) Sites for chronic diseases. Paper presented at the 2013 46th Hawaii International Conference on System Sciences, Hawaii, USA, January 7–10, 2013.
  17. Morrison, L. G., Yardley, L., Powell, J., and Michie, S., What design features are used in effective e-health interventions? A review using techniques from Critical Interpretive Synthesis. Telemed. J. E. Health 18(2):137–144, 2012. doi:10.1089/tmj.2011.0062. ArticlePubMedGoogle Scholar
  18. Doupi, P., and van der Lei, J., Design and implementation considerations for a personalized patient education system in burn care. Int. J. Med. Inform. 74(2–4):151–157, 2005. doi:10.1016/j.ijmedinf.2004.04.021. ArticlePubMedGoogle Scholar
  19. Clayman, M. L., Boberg, E. W., and Makoul, G., The use of patient and provider perspectives to develop a patient-oriented website for women diagnosed with breast cancer. Patient Educ. Couns. 72(3):429–435, 2008. ArticlePubMedGoogle Scholar
  20. Ferney, S. L., and Marshall, A. L., Website physical activity interventions: Preferences of potential users. Health Educ. Res. 21(4):560–566, 2006. doi:10.1093/her/cyl013. ArticlePubMedGoogle Scholar
  21. DeGuzman, M. A., and Ross, M. W., Assessing the application of HIV and AIDS related education and counselling on the Internet. Patient Educ. Couns. 36(3):209–228, 1999. doi:10.1016/S0738-3991(98)00096-2. ArticleCASPubMedGoogle Scholar
  22. Gosselin, P., and Poitras, P., Use of an internet “Viral” marketing software platform in health promotion. J. Med. Internet Res. 10(4), e47, 2008. doi:10.2196/jmir.1127. ArticlePubMed CentralPubMedGoogle Scholar
  23. Rezailashkajani, M., Roshandel, D., Ansari, S., and Zali, M. R., A web-based patient education system and self-help group in Persian language for inflammatory bowel disease patients. Int. J. Med. Inform. 77(2):122–128, 2008. doi:10.1016/j.ijmedinf.2006.12.001. ArticlePubMedGoogle Scholar
  24. Yamout, S. Z., Glick, Z. A., Lind, D. S., Monson, R. A., and Glick, P. L., Using social media to enhance surgeon and patient education and communication. Bull. Am. Coll. Surg. 96(7):7–15, 2011. PubMedGoogle Scholar
  25. Bond, D. S., Thomas, J. G., Raynor, H. A., Moon, J., Sieling, J., Trautvetter, J., Leblond, T., and Wing, R. R., B-MOBILE - A smartphone-based intervention to reduce sedentary time in overweight/obese individuals: A within-subjects experimental trial. PLoS One 9(6), e100821, 2014. doi:10.1371/journal.pone.0100821. ArticlePubMed CentralPubMedGoogle Scholar
  26. Antypas, K., and Wangberg, S. C., Combining users’ needs with health behavior models in designing an internet-and mobile-based intervention for physical activity in cardiac rehabilitation. JMIR Res. Protoc. 3(1), e4, 2014. doi:10.2196/resprot.2725. ArticlePubMed CentralPubMedGoogle Scholar
  27. Duncan, M., Vandelanotte, C., Kolt, G. S., Rosenkranz, R. R., Caperchione, C. M., George, E. S., Ding, H., Hooker, C., Karunanithi, M., and Maeder, A. J., Effectiveness of a web- and mobile phone-based intervention to promote physical activity and healthy eating in middle-aged males: Randomized controlled trial of the manup study. J. Med. Internet Res. 16(6), e136, 2014. doi:10.2196/jmir.3107. ArticlePubMed CentralPubMedGoogle Scholar
  28. Dennison, L., Morrison, L., Conway, G., and Yardley, L., Opportunities and challenges for smartphone applications in supporting health behavior change: Qualitative study. J. Med. Internet Res. 15(4), e86, 2013. doi:10.2196/jmir.2583. ArticlePubMed CentralPubMedGoogle Scholar
  29. Harries, T., Eslambolchilar, P., Stride, C., Rettie, R., Walton, S., Walking in the Wild – Using an Always-On Smartphone Application to Increase Physical Activity. In: Human-Computer Interaction–INTERACT 2013. Springer, pp 19–36. doi:10.1007/978-3-642-40498-6_2, 2013.
  30. He, Z., Luo, Y., Liang, G., Runking: A mobile social persuasion system for running exercise. Paper presented at the Computing, Communications and IT Applications Conference (ComComAp), 2013, Hong Kong, April 1–4, 2013.
  31. Dantzig, S., Geleijnse, G., and Halteren, A. T., Toward a persuasive mobile application to reduce sedentary behavior. Pers. Ubiquit. Comput. 17(6):1237–1246, 2013. doi:10.1007/s00779-012-0588-0. ArticleGoogle Scholar
  32. Glynn, L. G., Hayes, P. S., Casey, M., Glynn, F., Alvarez-Iglesias, A., Newell, J., ÓLaighin, G., Heaney, D., Murphy, A. W., SMART MOVE-a smartphone-based intervention to promote physical activity in primary care: study protocol for a randomized controlled trial. Trials 14 (157). doi:10.1186/1745-6215-14-157, 2013.
  33. King, A. C., Hekler, E. B., Grieco, L. A., Winter, S. J., Sheats, J. L., Buman, M. P., Banerjee, B., Robinson, T. N., and Cirimele, J., Harnessing different motivational frames via mobile phones to promote daily physical activity and reduce sedentary behavior in aging adults. PLoS ONE 8(4), e62613, 2013. doi:10.1371/journal.pone.0062613. ArticlePubMed CentralCASPubMedGoogle Scholar
  34. McMahon, S., Vankipuram, M., and Fleury, J., Mobile computer application for promoting physical activity. J. Gerontol. Nurs. 39(4):15–20, 2013. doi:10.3928/00989134-20130226-01. ArticlePubMedGoogle Scholar
  35. Hong, Y., Dahlke, D. V., Ory, M., Hochhalter, A., Reynolds, J., Purcell, N. P., Talwar, D., and Eugene, N., Designing iCanFit: A mobile-enabled Web application to promote physical activity for older cancer survivors. JMIR Res. Protoc. 2(1), e12, 2013. doi:10.2196/resprot.2440. ArticlePubMed CentralPubMedGoogle Scholar
  36. Chang, T-R., Kaasinen, E., Kaipainen, K., What influences users’ decisions to take apps into use?: A framework for evaluating persuasive and engaging design in mobile apps for well-being. Paper presented at the Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedi, Ulm, Germany, December 4–6, 2012.
  37. Ayubi, S. U., Parmanto, B., Person, A., Persuasive social network for physical activity. Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, San Diego, CA, August 28-September 1, 2012.
  38. Khan, A. M., Siddiqi, M. H., Promoting a healthier life-style using activity-aware smart phones. Paper presented at the 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, June 12–14, 2012.
  39. Hebden, L., Cook, A., van der Ploeg, H. P., and Allman-Farinelli, M., Development of smartphone applications for nutrition and physical activity behavior change. JMIR Res. Protoc. 1(2), e9, 2012. doi:10.2196/resprot.2205. ArticlePubMed CentralPubMedGoogle Scholar
  40. Fukuoka, Y., Komatsu, J., Suarez, L., Vittinghoff, E., Haskell, W., Noorishad, T., Pham, K., The mPED randomized controlled clinical trial: applying mobile persuasive technologies to increase physical activity in sedentary women protocol. BMC Public Health 11 (933). doi:10.1186/1471-2458-11-933, 2011.
  41. Foster, D., Linehan, C., Lawson, S., Motivating physical activity at work: using persuasive social media extensions for simple mobile devices. Paper presented at the 1st International Workshop on Nudge and Influence Through Mobile Devices, Lisbon, Portugal, September 7–10, 2010.
  42. Arteaga, S. M., Kudeki, M., Woodworth, A., Kurniawan, S., Mobile system to motivate teenagers’ physical activity. Paper presented at the Proceedings of the 9th International Conference on Interaction Design and Children, Barcelona, Spain, June 9–12, 2010.
  43. Klasnja, P., Consolvo, S., McDonald, D. W., Landay, J. A., and Pratt, W., Using mobile & personal sensing technologies to support health behavior change in everyday life: Lessons learned. AMIA Ann. Symp. Proc. 2009:338–342, 2009. Google Scholar
  44. de Oliveira, R., Oliver, N., TripleBeat: enhancing exercise performance with persuasion. Paper presented at the Proceedings of the 10th international conference on Human computer interaction with mobile devices and services, Amsterdam, The Netherlands, September 2–5, 2008.
  45. Ramaprasad, A., Syn, T., Win, K. T., The bright, light, and blind/blank spots in HIPAA research: An ontological analysis. In: Proceedings of the Annual Hawaii International Conference on System Sciences. pp 3023–3032. doi:10.1109/HICSS.2015.365, 2015.
  46. Lappalainen, P., Langrial, S., Oinas-Kukkonen, H., Tolvanen, A., and Lappalainen, R., Web-based acceptance and commitment therapy for depressive symptoms with minimal support a randomized controlled trial. Behav. Modif. 39(6):805–834, 2015. ArticlePubMedGoogle Scholar
  47. Kuonanoja, L., Langrial, S., Lappalainen, R., Lappalainen, P., and Oinas-Kukkonen, H., Treating depression with a behavior change support system without face-to-face therapy. AIS Trans. Human-Comput. Interact. 7(3):192–210, 2015. Google Scholar
  48. Langrial, S., Oinas-Kukkonen, H., Less fizzy drinks: a multi-method study of persuasive reminders. Paper presented at the Proceedings of the 7th international conference on Persuasive Technology: design for health and safety, Linköping, Sweden, 2012.
  49. King, A. C., Bickmore, T. W., Campero, M. I., Pruitt, L. A., and Yin, J. L., Employing virtual advisors in preventive care for underserved communities: Results from the COMPASS study. J. Health Commun. 18(12):1449–1464, 2013. ArticlePubMedGoogle Scholar

Author information

Authors and Affiliations

  1. School of Computing and Information Technology, University of Wollongong, Northfields Avenue, Wollongong, 2522, Australia John Matthews, Khin Than Win & Mark Freeman
  2. University of Oulu, Oulu, Finland Harri Oinas-Kukkonen
  1. John Matthews